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Abstract -  Sleep stage detection and further accurate classification is an important step for diagnosing the different 

sleep related diseases. In this research paper an effective method for automatic sleep stages detection from single 

channel EEG signal is presented. In this present work the various stages as Awake, first, second, third and fourth 

sleep stages and rapid eye movement are classified by using Empirical Mode Decomposition (EMD), Chi-square and 

Adaboost algorithm. This classification is based on some selected attributes. The accuracy of classifier for five stage 

and 6 stage is obtained as 92.14% and 90.77% respectively. 

Keywords— EEG, EMD, sleep stages, Chi-square, Hjorth parameter.  

I. Introduction 

Electroencephalograms (EEGs) are important bio-signals used to analyze and diagnose different health-

related problems. Sleep stage detection is one of the applications where EEG signals are used. The efficient 

detection of sleep phases contributes to the identification and treatment of different problems linked to the brain. 

The definitions Rech-tschaffen and Kale's (R&K) [1] and the American Academy of Sleep Medicine 

(ASAM)[2] are two methods for identifying sleep phases. The R&K criterion is used for the analysis in this 

article. Six sleep phases are awake (A), stage 1, 2, 3, 4 termed as S1, S2, S3, S4 and fast eye movement (REM). 

In five stages of sleep detection, S3 and S4 as combinationtermed as slow wave sleep (SWS). In four steps, the 

five phases S1 and S2 are combined to form a single stage. In three stages, S1, S2, S3 and S4 are combined to 

form a non-rapid eye movement (NREM) and two stages consist of awake and all remaining sleep periods. The 

expert scorer will provide the sleep stage scoring. But such scores also have human error and variation from 

scorer to scorer [3]. Less time and better accuracy can be accomplished with the aid of a computer-based 

automated sleep stage scorer. Various data were used by various authors to predict sleep phases. 

Electroencephalogram (EEG), Electromyogram (EMG) and Electrooculogram (EOG) are primarily used for this 

purpose. It's Charbonnieret. Al. [4] used a multilayer sensor for stage detection. Spectral and statistical attributes 

have been extracted from single channel EEG, EOG and EMG data. The precision obtained for the five-phase 

detection is 85.5 percent. Agrawalet. Al. [5] the two EEG channels, two EOG channels, one single channel 

EMG data were used to extract spectral attributes. These attributes were used with the K-mean clustering for 

classification. After this method, a precision of 80 percent was achieved.  

Authors also used data from a single channel to detect the different stages. Most of them used a single EEG 

channel for this purpose. Rozhinaet. Al. [6] used a single channel EEG signal for two stages, three stages, four 

stages and six stages. Spectral and statistical attributes have been extracted and used in the ANN. It's Zhu et. Al. 

[7] used the visibility graph of the single channel EEG data for the extraction of the attribute.  

The best attributes have been chosen and transmitted via SVM with the RBF kernel. The two-stage, three-

stage, four-stage, five-stage and six-stage accuracy rates were 97.9%, 92.6%, 89.3%, 88.9% and 87.5% 

respectively. Hassan and Hassan et. al. [8] Single channel EEG data were also used for two phases of 

classification, three phases, four phases, five phases, six phases. Bagging has been extracted and graded for the 

spectral and statistical features In the two-stage classification, maximum accuracy of 95.5% was achieved. 

In our proposed method, single channel EEG attributes are derived by statistic attributes, Hjorth parameters, 

and zero levels of empirical decomposition mode. The attributes will then be chosen using the chi-square 

evaluation [10]. Finally in the AdaBoost classification, the selected attributes are used with the REP tree as the 

basis user. Two phases, four phases, five phases and six phases have been identified and the exact findings 
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indicate that our system has yielded the best results from past plays. The results are reliable.  

 

2. Proposed Methodology and Datasets: 

2.1 Datasets 

The data sets used are taken from the sleep-EDF Physionet database [9]. The experiment was randomly 

chosen for four healthy subjects (ST4001e0, ST4002e0, ST4022e0 and ST4112e0). The databases are comprised 

of 2 EEG channels (Fpz-Cz and Pz-Oz) and one EOG channel. For high-precision sleep-stage detection, the Pz-

Oz single channel data is used. The cumulative data was collected in 11055 epochs. The epoch details are shown 

in Table I below.  

 

TABLE I: Epochs in Different Sleep Stages 

SLEEP STAGES EPOCHS COUNT 

AWAKE 7880 

SLEEP STAGE 1 225 

SLEEP STAGE 2 1555 

SLEEP STAGE 3 365 

SLEEP STAGE 4 370 

REM 655 

 

2.2 Methodology 

The EEG Pz-Oz cycles of the 30s are primarily used in this experiment. Every time is then used with the 

assistance of the statistical parameters of EMD for extraction of attributes via MATLAB. In the next step, a Chi-

square calculation was made for the extracted attribute. In addition, these attributes for the training and 

classification of data are used in machine learning. AdaBoost is used in this experiment as a machine learning 

algorithm. The data was split into two classes. The first collection contains 60% of all data sets used for 

instruction. The second collection covers 40% of data and is used for data processing. This is achieved with the 

use of the WEKA algorithm.  

 

  
Figure: 1. Flow diagram of experiment 

 

The method for decomposing the signal into the time frequency approximation of the signal is the empirical 

mode decomposting (EMD). The decomposed estimate is called the IMF function. Minimum modes 

requirements 

 • The overall difference between total minimum numbers and overall numbers should be one.  

• The total of the local maximum and minimum amount produced should be zero at any time.  

Figure 2 shows the produced IMFs.  

Classification using Adaboost

Attribute selection

Attribute extraction with EMD

EEG Pz-Oz epochs
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Fig. 2: The IMF generated with EMD algorithm. 

 

Different attributes used in this experiment are Skewness (s), Kurtosis (k), Mean (m) and Variance (v2).   

 

 

Skewness (s) offersirregularity of the diverse signal. S of each N IMF with mean (m) and variance can be 

calculated as given in eqn. (1): 

 

s =
1

N
∑ (

pi−m

v
)3N

i=1            (1) 

 

Kurtosis (k) offers the peak value of signal.  Kurtosis of each N IMF with mean (m) and variance (v) can be 

calculated as given in eqn. (2): 

 

k =
1

N
∑ (

pi−m

v
)4N

i=1            (2) 

Total 44 attributes were extracted from each IMF's at different moments. 

 

Mean (m) demonstrates the central propensity of any data. m can be intendedby eqn. (3). 

 

m =
1

N
∑ pi
N
i=1                          (3) 

 

Variance (v2) gives the spreading of signal contrary to mean value (m). This variance is supportive for 

classification sleep stages, REM from S1 and S2. Variance of each N IMF can be intendedby eqn. (4): 

 

v2 =
1

N
∑ (pi −m)2N
i=1                 (4) 

2.3 Chi-square evaluation 

The attributes generated after EMD process are passed through the Chi-square distribution. ThisChi-square 

distribution is defined as in equ. 5. 

χ2 =
(O−E)2

E
                   (5) 

We get different χ2value for the different attribute. The ranking is provided based on this value in decreasing 

order. Subsequently, the best attributes are selected from the list which provides the best result. 

 

2.4 AdaBoost 

The algorithm AdaBoost or Adaptive Boost, developed by the Freund and Schapire in 1996 is a meta-

learning, automated learning algorithm. In this algorithm, the learner is improved by increasing the weighted 

value to improve performance. The REP tree was used for the learner method during the classification method. 

The REP tree gives a fast learning algorithm which provides the tree with an information gain or variance of the 

instances based on the regression or decision. A 10-fold validation is the classification method for Adaboost. 
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The batch size is 100, the iteration number is 100 and the threshold is 100. For the author, i.e. The batch size of 

the REP tree is 100, while the seed number is 2. 

3. RESULTS AND DISCUSSION 

This experiment is performed on the computer with Pentium Quad core processor, 2.17 Ghz clock speed and 

4 GB RAM on Windows 10 platform. 

 

TABLE II:  COMPARISON TABLE OF ACCURACY 

  Zhu et. al. 

(2014)[Error! 

Reference source not 

found.] 

Hassan et. al.(2016) 

[Error! Reference source 

not found.] 

Proposed method 

2-stages 97.9% 95.05% 98.01% 

3-stages 92.6% 89.77% 94.78% 

4-stages 89.3% 87.49% 92.66% 

5-stages 88.9% 86.53% 92.15% 

6-stages 87.5% 85.57% 90.78% 

 

The proposed AdaBoost method is compared with the state-of-the-art research work for the classification of 

the sleep period. The sleep-EDF data from Physionet is also taken into account in this study and Zhu. al. [7] 

used the EEG channel visibility disparity map and the single channel horizontal visibility map. Those included 

the attributes used for the classification in SVM. The two-stage, three-stage, four-stage, five-stage and six-stage 

[12] precisions are 97.9%, 92.6%, 89.3%, 88.9% and 87.5% respectively. Hassan and Hassan.et. Al.[8] used the 

properties of statistics and scope for the bootstrap aggregation classification. 

 In this experiment, the author has obtained a result of 2 phases, 3 phases, 4 phases, five phases and six 

phases, with 95.05%, 89.77%, 87.49%, 86.5% and 85.57%. The main explanation for this author's lower 

accuracy is a smaller number of classification attributes. Chi-Square has obtained a better result with our 

proposed methodology for the implementation of the Adaboost classification with the EMD statistical attributes. 

The exactness for all stages, three stages, four phases, five phases and six phases was 98.01%, 94.78%, 92.66%, 

92.15% and 90.78%. The proposed research was best performed in each classification criteria. 

 

TABLE III: CONFUSION MATRIX OF SIX STAGES CLASSIFICATION 

 

 

  

Proposed method 

Expert 

scoring 

  S1 S2 S3 S4 R A Sen. (%) 

S1 13 23 0 0 33 22 14.2857143 

S2 2 526 35 11 37 13 84.2948718 

S3 0 49 56 35 1 3 38.8888889 

S4 0 9 24 114 0 1 77.027027 

R 4 48 0 0 192 18 73.2824427 

A 6 13 2 0 19 3114 98.7317692 

 

 

Table III introduces the six-stage classification uncertainty matrix. From the table above, we may find that 

sensitivity for S2, S4 and R was good at 84.29%, 77% and 73.28%, but in case of S1 the sensitivity was low at 

14%. Most S1 data in the REM stage are malclassified. S1 from REM is a boring job in the real scenario. The 

problem is the same. In addition, the S2 data were mistreated at stage S2 and A. The other trigger is the smaller 

number of the sample given for the training collection. The signal is less sensitive. For the S3 level, average 

sensitivity is achieved. Specificity of the S1 is better from all other shows that the lesser number of data from 

other stages are misclassified in this category. The awake (A) stage shows the least specificity as compared to 

others. 
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Table IV shows the confusion matrix of five stage classification. In this stage, the data of S3 and S4 are 

combined to form the SWS. In this table, we can see that when the data of SWS gave the better sensitivity than 

the S3 and S4 in table III. In the five stage classification, the sensitivity for the S1 is poor. For the S2, R, and A 

stages, better sensitivities can be observed. Also, specificity is best for the S1 stage and the improvement in 

specificity when S3 is added with the S4.  

TABLE IV: CONFUSION MATRIX OF FIVE STAGE CLASSIFICATION 

 

 

  

Proposed method 

Expert 

scoring 

  S1 S2 SWS R A Sen. 

S1 13 22 0 31 24 
14.54

% 

S2 3 524 45 40 11 
84.09

% 

SWS 0 52 236 1 4 
80.80

% 

R 5 46 0 188 22 
71.87

% 

A 5 15 3 17 3114 
98.72

% 

 

We get the better sensitivity when the numbers of stages are less for the classification. From table III and IV, 

we can see the improvement in each stage except for the A.  

TABLE V: CONFUSION MATRIX OF SIX STAGES CLASSIFICATION 

  Proposed method 

 

 

Expert 

scoring 

 S1 S2 S3 S

4 

R A Sensitivity %) 

S1 32 58 0 0 83 54 14.1 

S2 6 1312 88 2

8 

93 32 84.2 

S3 0 122 142 8

7 

2 7 39.2 

S4 0 23 59 2

84 

0 3 77 

R 10 119 0 0 47

9 

46 73.2 

A 14 32 5 1 47 77

87 

98.7 

Specificity (%) 0.3 3.7 1.4 1

.1 

2.2 4.5  

  

The confusion matrix for 5 stages classification is presented in Table V. The SWS stage ifs formed by 

combining the stages S3 and S4. The misclassification is very less in comparison of correctly classified ata. This 

can be concluded by observing the expert scoring of Table V and Table VI for 5-stages and 6-satgs respectively. 

 

TABLE VI: CONFUSION MATRIX OF FIVE STAGE CLASSIFICATION 

 

 

 

Expert 

scoring 

Proposed method 

 S1 S2 SWS R A Sensitivity 

(%) 

S1 33 56 0 77 61 14.5% 

S2 7 1311 113 101 27 84.1% 

SWS 0 129 589 2 9 80.8% 

R 13 115 0 470 56 71.9% 

A 13 37 8 43 7785 98.7% 

Specific 0.3% 3.5% 1.2% 2.1% 4.8%  



Transaction on Biomedical Engineering Applications and Healthcare  
Vol-1 Issue-1, June 2020, PP.12-17 

 
 

17 

ity (%) 

  

 

 

We get the better sensitivity when the numbers of stages are less for the classification. From table III and IV 

we can see the improvement in each stage except for the A.  

CONCLUSION 

we have strengthened our precise approach with a minimum increase of 0.11% in stage 2 from the previous 

author in our proposed method. For the five-stage grouping, the highest precision increase was observed. In the 

both five and six stage classifications, the value of stage 1 can be improved by increasing numbers of instances 

and by choosing certain attributes to boost the disparity between stage 1 and other stages. for six stages, total 

sensitivity is 90.6% and five steps are 92.2%. Each of them has a strong value in terms of its specificity. The 

value on the top is the wake-up process. Different factors influence accuracy, flexibility and specificity. The 

better value of these parameters lists a variety of cases in the training results. The selected data classification 

attribute is another aspect. Sometimes they work best to identify a certain element and contribute to a mistake. 

The classification parameter may also be influenced by number of grading levels. Thanks to its greater 

sensitivity and specificity of different sleep stages, this proposal work would better work for a 5-stage grouping. 
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